by strain and the initial kinetic energy of the liner is independent of R, but is governed
by the ratio Re/ho, the value of the initial compression rate R(0), and the magnitude of the
dynamic yield point. Estimates executed by means of (11) and (12) are in good agreement with
the computation results according to the equation of motion.

In conclusion, we note the following.

1. Comparison of the results of calculations with the experiments conducted confirms
the feasibility of using relationships (2), (3), and (4) for the detérmination of the charac~-
teristics of motion of a liner and the computation of energy loss by deformation.

2. The magnitude of the dynamic limit point of aluminum, in experiments with liners
under conditions typical for electromagnetic acceleration, was a constant and uniform
2-10° Pa.

3. The energy loss. by deformation, determined according to expression (12), in the
interval Ro/ho = 20-60 for R(0) = (0.25-1.5)-10> m/sec, coincides well with the estimate
from the solution of equation (10).
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RESIDUAL STRESSES AND VISCOSITY IN THE HIGH-SPEED
DEFORMATION OF METALS

N. N. Sergeev—Al'bov UDC 539.376

By formulating a numerical experiment, the residual stresses occurring in the surface
layer of a metal after the passage of a pressure pulse are studied in this paper. Their
magnitude as a function of the magnitude and rate of traversal of the acting pressure pulse
is studied. The stressed behavior of the metal is described by Maxwell equations of a linear
viscoelastic medium [1}. Taking account of plastic phenomena occurs in this model because of
the introduction of a nonlinear dependence of the relaxation time on the tangential stress
intensity.

To describe metal behavior under high-speed strain, a viscous incompressible fluid model
is often used. Within the framework of this model, the viscosity of metals during collisions
in the explosive welding mode is investigated in [2]. Here the model equation utilized in
[2] and the Maxwell model are compared in an example of numerical results.

Novosibirsk. Transiated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2,
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1. Let the stressed behavior of a metal layer moving at a constant subsonic velocity w
along the x axis of a plane of the variables (x, y) be described by the Maxwell model of a
linear viscoelastic medium with a relaxation time nonlinearly dependent on the stress state
of the metal. The system of equations will have the form [1]

L) o Gttt = —
d(ondt 0)+ g b; (;u g pgb% j; __6221— (77
oo L))o d—;’;-%—pob%(-j-;+§;)=-%,
where
-j—tz—(%—}—w-a%, 0’=w%£—(ﬁ§ w < by << ey

(u + w, v) are the displacement velocity vector components of points of the medium; Sijo stress
tensor components; po, density of the medium; and co, bo, longitudinal and transverse speeds
of sound.

The interpolation formula [3] )
pbz n—1 @ _ T
e TR (10 )
(1——T~)n 0==315K, T,=300K, p=6354g/mole, (1.2)
*

R = 8.317/deg mole

is taken for the relaxation time. Here I[I= l/((ou-cgq) + (g9 — Og3)* + (035 — 01,)2 +- 665, )/2  1is
the tangential stress intensity. The interpolation constants of this formula are presented
in Table 1. The metal layer on the (x, y) plane is given in the form

S={z, y| —oo <z <<+, 0Ly <<,}.
The pressure pulse is modeled as follows. On the layer boundary v = 1, for x; € x < xa.

The rest of the upper and the lower boundaries of the layer are stress—free. At the initial
time (t = 0), the velocity and stress field in the metal layer are zero.

The computotlonal domain in the numerical experiment is the finite rectangle I = {x,
yl0<x<12,, 0<y<1,} (l, =65mm, I, =8 mn.

This rectangle 11 is divided into rectangular difference cells with the sides h, and h,.
A number (n, m)corresponds toeach cell, where n = 0, 1, ..., NI, Nl + 1, ..., N2, ...,

N3; m =0, 1, ..., MI; Nl = 11; N2 = 20; N3 = 49 and Ml = 13. Then h; = 7,/(1 + N3), = %,/
(L 4+ M1).

At the initial time t = 0 there holds in the rectangle 1
u=v=20 0y = Gy = G = 0, = 0, (1.3)

and the following conditions are satisfied on its boundaries

for y =0 0y,=0,, =0,

for y=1,00,=0,0p=—p for y,<<a<<a Ty (4= N1 X hy, 2, =
= N2Xh,), G5 = 0 for all other x, (1.4)
for  x =0 [0y — pycoul =0, v=0,

for z = I, layy + pocoul = 0, 055 = 0.

To find the coordinates of points of the metal layer during its deformation we use the
eguations
0%/0t + wig/oxr = u + w, an/at + wim/oxz = v. (1.%)
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A numerical algorithm for the computation of the problem (1.1)-(1.5) is constructed on
the basis of the §. K. Godunov difference method [4], which is described in detail in [5] in
application to this problem.

2. In the stationary case, the following relationships are satisfied for the system
(1.1) on the double real characteristic of the streamline y = comst [6]

. 2 2
o[ g a—n -2 (o= ) =) 2.1)
Do | Tu T ) U— = Oz | _ = - 2

[4
0 0 Tw ’

3 2 2 2 2
8 cy — 2b0 Zpob0 €y — 2b;
Ty [0'33. — a Ogp T —~ U || =~ | Ogg— 0 — a (9'33"0') (tw).

The function T is an abruptly changing function of the state of the substance; thus 7 =
= in the elastic zone, while T = 1 usec in the zone of developed plastic deformations. There-
fore, additives determined by the right sides of the relationships (2.1) remain in the com-
ponents O0i; and 035 after the metal has passed through this zone.

The presence of such properties of the system of equations being studied permits the
computation of the residual stresses that originate in a metal layer because of pressure
pulse motion over this layer.

Stress and velocity fields in copper (Table 2) are studied as a function of the velocity
w of pressure pulse motion and of its magnitude p. We shall divide the desired solution of
the viscoelastic equations over two components, elastic and viscous:

. . v
u=u‘>‘la+uv,v:vela+v",
ela , V ela v ela v
o5=0; +0ij §=8 +E,m=m +1.
The elastic part of the solution satisfies the problem (1.1)-(1.4) under the condition
that the relaxation time T is infinity in the system (1.1).

The computation is performed in steps in time up to the build-up of the stress and velo-
city fields. The times t = 2000h; correspond to the build-up of the physical quantities.

Graphs of the stress ¢,;, are presented in Fig. | .for fixed values of x(N = 24, 30, 36,
curves 1-3, respectively) as a function of y(M =0, 1, ..., 13) for a problem with the param-
eters p = 5-10° Pa, w = 1.8 km/sec.

For 0,; and o33 different from zero, the stress tensor components ¢;», and 022 are
almost zero, where the 0,; have negative values on the side of the layer boundary on which
the pressure pulse acted.

Therefore, a layer of residual compressive stresses forms in a near-boundary strip of
the material (stressed layer). Its magnitude depends on the material yield point, which is
taken into account in this case by giving the relaxation time dependence on the tangential
stress intensity, as well as on the magnitude of the parameters p and w.

Diagrams of the stress o,,; are presented in Fig. 2 for fixed x (N = 28) as a function
of y for p = 5-10%, 10° Pa (curves 1| and 2, respectively) and w = 1.8 km/sec.

3. To describe the behavior of metals under high-speed deformation, the model of a

TABLE ]
Ty no ‘n, Na [N e Ny
2,4 Lisec 0,000196 | 0,018% | 0,955 | 1,902 | 000014 | 7,22
MY T ‘ : TABLE 2
6 - Po . €y bo
;;;;;; !
2
0 IR g km km
8,9 — 4,60 e 12,14 —
-2 -t 0 16,,10°Pa cm3 sec sec
Fig. !
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viscous incompressible fluid is often utilized. Within the framework of this model, the
viscosity of metals during their collision in the explosive welding mode is investigated in

[2].

Let us compare the model equation used in [2], and the Maxwell viscoelastic equations
in an example of the numerically computed problem.

Interpolation formulas for the relaxation time T are presented in [7]. These inter-~
polation formulas were constructed by determining the coefficient of viscosity in metals
during explosive welding [2]. Here the dependence between the coefficient of viscosity
and the relaxation time 1 was taken into account [7]:

W= pobg’t’. (3 . ])

We have a value of the relaxation time t at each computational point, and hence, accor-
ding to (3.1), the value of the coefficient of viscosity u as well. A numerical computation
permits determination of the viscous horizontal displacements of the particles of the metal
layer. They are determined by the equality £V = § — gela,

Under stationarity conditions for the deformation process, the first and subsequent
equations of the system (1.1) for the viscous components have the form

v v v .
i P, 90 (3.2)
O 55 = 2 oy !
v v v ela
00y, qefont o) G T (3.3)
Wz P0\Gy T oz T T
Equation (3.3) can be rewritten in the form
U,V —u Ouv+ 81/"' 5012‘, 'ela
MGG T )T W %

Substituting the equation obtained in (3.2) (under the assumption that T = const), we
obtain

1a
AN PLA %Y o), o0l
W — o = Y where() = (v — g2 . 12 3.4
Poll 5 oz < oyt + Q. whereQ Hézay wdx&y ay ° ( )

We integrate this equation with respect to x between —« and +:

+o0
E d2
Pth—ﬁd—erdezp%ﬁ+SQM’

+00
where z(y) = 7% 5 u¥(x, y)dx is the horizontal viscous displacement
—00
v
v v 00;’2 v
Umoo = 05 01100 = 0; Ty | Y 0.

We have from the results of the numerical computation

TP ela
805, ela ela
™ 0, oy dzr = Pl — Oy100 2 0.

— 00

30y
oy

aV
17
=0, gy

4o

This means that the magnitude of the integral of Q can be considered approximately
zero.

Then the horizontal viscous displacement of particles of the metal layer z(v) is

[§%}
£~
n



determined from the ordinary differential equation

v v &’z (3.5)
PolWlos = Ol1e0 = P«w'gj‘z‘ .

which can be obtained from the model equation

v,V s V
e on (3.6)
P 5z T T VG

by integrating with respect to x between —~ and +». In turn (3.6) can be obtained from (3.4)
if the quantity Q is neglected therein.

Equation (3.6) differs from the equation for the steady motion of a viscous incompres-
sible fluid

powduldz = pd*u/oy?, (3.7)
used in [7] by the term aofl/ax.

It will be shown below that taking account of this term substantially affects the hori-
zontal viscous displacement of the metal layer particles.
It follows from (1.4) and (2.3) that OYIm + pocoug = 0, then (3.5) is converted to the

form
1

c v a2
N (1 + —2-) U = —z'5
BT w ¥
and (3.7) to the form
Ay _ s
B

Let us use the notation

1 c
;2—(‘1 - —w"—) Uy for Eq, (3.6)
A=17"
R for Eq. (3.7)
bg‘c ©0 or eq.\3.7}.

Then (3.6) and (3.7) can be rewritten in the form
dz/dy? = A. (3.8)

Following [2], we consider the motion of the metal layer as an ideal fluid jet with con-
stant pressure. The velocity along the free surface is w here. After the pressure pulse has
acted on it, the jet rotates through an angle y. Then the law of conservation of momentum is
not satisfied along the x axis; the momentum i1s greater prior to jet rotation than after rota-
tion through the angle y. As in [2], we shall assume the presence of a pulse source which
will shape a viscous fluid jet moving at a lower speed than the velocity w. From the law of
conservation of momentum we find the impulse J = powlz(l — cos yv) along the x axis.

. . . v . . .
Then the dissipated velocity u} as x + » will be determined in the form ul = J/pol. =
w(l — cos v) = wy?/2.

From the law of conservation of vertical impulse it follows that 6527 = polaw® sin v,
where 0%, = —p; L is the length of the part of the layer on which the pressure pulse acts.
We hence obtain the relationship sin v = —pl/(polaw’).

Let us put

4z 0. (3.9)

o =0, 57|, =
=

Let us solve (3.8) under the condition (3.9). We obtain that z(y) = Ay®/2 — Al.y is the
desired horizontal displacement.

We evaluate the magnitude of the integrals of the viscous displacement {over the height
of the metal layer) obtained from the Maxwell model equation (3.6):
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TABLE 3

w,km/sec 1,8 1,8 1,2
p, 1078Pa 75 5 5
Scomps MM —0,54 ~0,35 —1,04
Sype MM —0,41 ~0,15 —0,48
Sys MM —0,14 ~0,04 —0,1
Heomps P  1,6-102 2,4-108 3,7-10°
i P 1,5-10° 10 1,6-10%
Hys P 4,1-104 l 2,9-10* 3,3-10¢

from the equation for the steady motion of a viscous incompressible fluid (3.7):

1 v
3 ¥
Iy vy

2
SB=Sz<y)dy=—'3—',73;’
0

and also the total displacement obtained from the numerical computation

m
Scomp= mzo Zm-r1/2llas

where ;m+1/z = z(h.(m + 1/2)) = En,m — Eﬁ%%-

The values of the quantities SM, Sy, Scomp are presented in Table 3. The magnitude of
the relaxation time T, meaning according to (3.1), the magnitude of the coefficient of vis-
cosity u also, can be calculated from the values of Sy and Sy. Values of the three coeffi-
cients of viscosity uM, Wy and Mcomp are presented in Table 3. The relaxation time T is
rarely a variable function in a numerical computation, hence lcomp evaluated according to
the mean value of 1T in the plastic zone is presented in Table 3.

Analysis of Table 3 shows that the coefficient of viscosity uy computed from the viscous
incompressible fluid model differs from the coefficient of viscosity Ucomp obtained by for-
mulation of a numerical experiment within the framework of the Maxwell viscoelastic model.

On the other hand, the coefficient of viscosity uM computed from the Maxwell model equation
(3.6) agrees in orders of magnitude with the computed coefficient of viscosity wkcomp. The
model equation (3.6) differs from (3.7) for steady viscous incompressible fluid motion by

the term 30Y.:/9x. Compressive residual stresses oY, are formed in the metal as a result of
its passage through the plastic deformation zone. The presence of residual stresses results
in a larger horizontal displacement of the metal layer particles than the analogous displace-
ment given by the viscous incompressible fluid model, which means different orders of magni-
tude of the values of the viscesity coefficient.

The author is grateful to S. K. Godunov for formulating and discussing the problem.
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SOME CONTACT PROBLEMS IN STEADY-STATE NONLINEAR CREEP IN
CASES WITH THIN COVERINGS

V. M. Aleksandrov and E. V. Kovalenko UDC 539.376

1. We shall first give some fundamental relations in the nonlinear theory of creep for
the case of plane deformation which are necessary for the rest of our discussion [1]:

40, 0Ty - Oy aa, 0 1.1
dx oy 0, 0z + ay (1.1
s, s, Py
Wt o wma

gx = A0T (1 — v) 0 — vOy ], &y = AT (1 — V) 0y — VO],

Yoy = A0] May  (m=1),

m=3%v%%—ﬂw+4a—w%—W%F+Kb—w%~www+&a,

where A is the creep modulus and v is the Poisson coefficient.

Now we consider the solutions of some problems in the equilibrium of a thin layerT
(Jz] << 00, 0 <Ly < k), whose physical and mechanical properties can be described by the system
of equations (1.1). Suppose that the boundary conditions on the faces of the layer have the
form

‘ Txy=0(y:O7y=h)7 Gy:“p*(x7 t) (y:h)9 (1-2)
prxt)=pt) (z|<a), p*=0 (|z[>a), v =DBo, (y=0).

Here t is time; v is displacement along the y axis; B is some linear operator whose form will
be indicated below, or

Tay = 0 (y = h), 0, = —p*(z, t) (y = h), (1.3)
u=0@y=0), v"=DBo, (y=0),

u is displacement along the x axis.

Taking account, furthermore, of the fact that the layer is thin, we see that instead of
the condition of compatibility of the rates of deformation defined by the third formula in
(1.1), we can take

Tay = 13(@) + ho(a). (1.4)

Then the approximate solutions of the boundary-value problems (1.1)-{1.4) can be written in
the form [2, 3]

Tay = 0x = 0, 6, = —p*(z, 1),
gy = — AL — V) [(1—~ 4 v?)B] V2 'p* (z, t) | sgn p* (2, t); (1.5
Or = — v (1 — V) 'p*(z, 1), 0, = — p* (2, ), Tuy =—v(1—v)7X
X(h—g) [p* (2, ), & = — A3S ™2 [(1 — 2v) (1 — v)']™ | P* (2, &) " sgm p* (2, 0)- (1.6)

$Z—layer will be considered thin if the length 2a of its actively loaded segment is small in
comparison with the thickness h.
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