
by strain and the initial kinetic energy of the liner is independent of Ro but is governed 
by the ratio Ro/ho, the value of the initial compression rate R(0), and the magnitude of the 
dynamic yield point. Estimates executed by means of (11) and (12) are in good agreement with 
the computation results according to the equation of motion. 

In conclusion, we note the following. 

i. Comparison of the results of calculations with the experiments conducted confirms 
the feasibility of using relationships (2), (3), and (4) for the determination of the charac- 
teristics of motion of a liner and the computation of energy loss by deformation. 

2. The magnitude of the dynamic limit point of aluminum, in experiments with liners 
under conditions typical for electromagnetic acceleration, was a constant and uniform 
2.108 Pa, 

3, The energy loss by deformation, determined according to expression (12), in the 
interval Ro/ho = 20-60 for R(0) = (0.2521.5).103 m/sec, coincides well with the estimate 
from the solution of equation (I0). 
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RESIDUAL STRESSES AND VISCOSITY IN THE HIGH-SPEED 

DEFORMATION OF METALS 

N. N. Sergeev-Al'bov UDC 539.376 

By formulating a numerical experiment, the residual stresses occurring in the surface 
layer of a metal after the passage of a pressure pulse are studied in this paper. Their 
magnitude as a function of the magnitude and rate of traversal of the acting pressure pulse 
is studied. The stressed behavior of the metal is described by Maxwell equations of a linear 
viscoelastic medium []]. Taking account of plastic phenomena occurs in this model because of 
the introduction of a nonlinear dependence of the relaxation time on the tangential stress 
intensity. 

To describe metal behavior under high-speed strain, a viscous incompressible fluid model 
is often used. Within the framework of this model, the viscosity of metals during collisions 
in the explosive welding mode is investigated in [2]. Here the model equation utilized in 
[2] and the Maxwell model are compared in an example of numerica~ results. 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnichesk0i Fiziki, No. 2, 
pp. 116-12!, March-April, 1983. Original article submitted February 9, 1982. 
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I. Let the stressed behavior of a metal layer moving at a constant subsonic velocity w 
along the x axis of a plane of the variables (x, y) be described by the Maxwell model of a 
linear viscoelastic medium with a relaxation time nonlinearly dependent on the stress state 
of the metal. The system of equations will have the form [l] 

du OtIll Oc~]~ dv 8a]2 c3022 
Po dt Ox Oy - - O ,  ~)o dt  Ox Oy O: 

d (~,~ - -  ~) 4 P0b0 ~ ~u 2 .~ Ov ~ - -  a 
dt 3 ~ + ~ P~176 ~ -- �9 ' 

- -  7, t 

( ) 

(1.1) 

where 

d __ O O aH'4-~176 W <  b o < c o ;  
dt - -  Ot -[- tO -~x ; ff - -  3 ' 

(u + w, v) are the displacement velocity vector components of points of the medium; oij , stress 
tensor components; Po, density of the medium; and Co, bo, longitudinal and transverse speeds 
of sound. 

The interpolation formula [3] 

(Oob~ " n - x  �9 

( T o ) = c ~  t - -  n, 0 = = 3 t 5 K ,  ( 1 . 2 )  

[(Tr ; ]  
= n  1 --I + n  8 , 

T o = 300  K,  ~ = 6354 g/mole,  

B = 8.31 J/deg.  mole 

is taken for the relaxation time. Here I= V(io,1--gm)2+(g2~--o~.~)2a-(o3s_~11)~-66~f2)/2 is 
the tangential stress intensity. The interpolation constants of this formula are presented 
in Table i. The metal layer on the (x, y) plane is given in the form 

S =  {x, y [ - - o o < x <  +oo, 0<~y~</2}.  
The  p r e s s u r e  p u l s e  i s  m o d e l e d  a s  f o l l o w s .  On t h e  l a y e r  b o u n d a r y  y = ~2 f o r  x~ ~ x ~< x2 .  

The  r e s t  o f  t h e  u p p e r  a n d  t h e  L o w e r  b o u n d a r i e s  o f  t h e  l a y e r  a r e  s t r e s s - f r e e .  A t  t h e  i n i t i a l  
t i m e  ( t  = 0 ) ,  t h e  v e l o c i t y  a n d  s t r e s s  f i e l d  i n  t h e  m e t a l  l a y e r  a r e  z e r o .  

The computational domain in the numerical experiment is the finite rectangle F~ = {x, 
yI0 ~< x ~< 11, 0 ~< y ~< 7~2) (Z.I = 65 mm, Z2 = 8 mm. 

This rectangle ~ is divided into rectangular difference cells with the sides h~ and h2. 
A number (n, m) corresponds toeach cell, where n = 0, 1, ..., NI, N] + I, ..., N2 ..... 

N3; m = 0, I, ..., MI; N1 = ll; N2 = 20; N3 = 49 and M1 = 13. Then h~ = l~/(l + N3), = 72/ 
(I + Mi). 

At the initial time t = 0 there holds in the rectangle 

u= v=0, ~11= ~m= o~3=a~2=0, (1.3) 

and the following conditions are satisfied on its boundaries 

for y = 0 a12= o22= 0, 

for y = 12 al~ = 0, oe~ .=  - - p  for v l ~ . ~ x ~ < x  2 ( x ~ =  N I  • h , , x ~  = 

= N 2 X h 2 ) ,  e m =  0 for all other x, ( 1 . 4 )  

for x = 0 [ a n - -  PoCo u]  = 0, v =  0, 

for x = 11 [~11-6PoCe u]  = 0, a l ~ =  0. 

To find the coordinates of points of the metal layer during its deformation we use the 
equations 

o~/at -6 wO~/ax = u -6 w, oR~at -6 u,a~!/ax = v. ( 1 . 5 )  
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A numerical algorithm for the computation of the problem (1.1)-(1.5) is constructed on 
the basis of the S. K. Godunov difference method [4], which is described in detail in [5] in 
application to this problem, 

2. In the stationary case, the following relationships are satisfied for the system 
(l.l) on the double real characteristic of the streamline y = const [6] 

o 4Pobo~ %~ o .... ~ % - . -  :-~ ( . ~ -  ~) ( 2 .  I ) 
Oz 0"11 . . . . .  (I~2 

The f u n c t i o n  ~r i s  an a b r u p t l y  c h a n g i n g  f u n e t i o n  o f  t h e  s t a t e  o f  t h e  s u b s t a n c e ;  t h u s  "c = 
~, i n  t h e  e l a s t i c  z o n e ,  w h i l e  "c ~ ! !Jsec i n  t h e  zone  o f  d e v e l o p e d  p l a s t i c  d e f o r m a t i o n s .  T h e r e -  
f o r e ,  a d d i t i v e s  d e t e r m i n e d  by  t h e  r i g h t  s i d e s  o f  t h e  r e l a t i o n s h i p s  ( 2 . 1 )  r e m a i n  i n  t h e  com- 
p o n e n t s  c~11 and (Jaa a f t e r  t h e  m e t a l  h a s  p a s s e d  t h r o u g h  t h i s  z o n e .  

The p r e s e n c e  o f  s u c h  p r o p e r t i e s  o f  t i re  s y s t e m  o f  e q u a t i o n s  b e i n g  s t u d i e d  p e r m i t s  t h e  
c o m p u t a t i o n  o f  t h e  r e s i d u a l  s t r e s s e s  t h a t  o r i g i n a t e  i n  a m e t a l  l a y e r  b e c a u s e  o f  p r e s s u r e  
p u l s e  m o t i o n  o v e r  t h i s  l a y e r .  

S t r e s s  and  v e l o c i t y  f i e l d s  i n  c o p p e r  ( T a b l e  2) a r e  s t u d i e d  as  a f u n c t i o n  o f  t h e  v e l o c i t y  
w o f  p r e s s u r e  p u l s e  m o t i o n  and  o f  i t s  m a g n i t u d e  p .  We s h a l l  d i v i d e  t h e  d e s i r e d  s o l u t i o n  o f  
t h e  v i s c o e l a s t i c  e q u a t i o n s  o v e r  two c o m p o n e n t s ,  e l a s t i c  and  v i s c o u s :  

, V u - -  u ~la -~-'u v, v = vela-~ - v ,  
el a_~_ v la ela v 

The elastic part of the solution satisfies the problem (l.l)-(l.4) under the condition 
that the relaxation time T is infinity in the system (l.l). 

The computation is performed in steps in time up to the build-up of the stress and velo- 
city fields. The times t ~ 2000h3 correspond to the build-up of the physical quantities. 

Graphs of the stress oi~ are presented in Fig. l .for fixed values of x(N = 24, 30, 36, 
curves I-3, respectively) as a function of y(M = 0, l, ..., 13) for a problem with the param- 
eters p = 5.10 s Pa, w = 1.8 km/sec. 

For o~ and ~33 different from zero, the stress tensor components o~2 and ~22 are 
almost zero, where the o~i have negative values on the side of the layer boundary on which 
the pressure pulse acted. 

Therefore, a layer of residual compressive stresses forms in a near,boundary strip of 
the material (stressed layer). Its magnitude depends on the material yield point, which is 
taken into account in this case by giving the relaxation time dependence on the tangential 
stress intensity, as well as on the magnitude of the parameters p and w. 

Diagrams of the stress o~ are presented in Fig. 2 for fixed x (N = 28) as a function 
of y for p = 5,10 s, 109 Pa (curves l and 2, respectively) and w = 1.8 km/sec. 

3. To describe the behavior of metals under high-speed deformation, the model of a 

TABLE 1 

i0,000,00 1 I I 10,000,  

-2 -t 0 I ~ofOt'Pa 8,9 g 

F i g .  1 

~S 

7,22 

TABLE 2 

Co I bo 
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0l I 
-2 -~ 0 ~6.7t0 s" Pa 

Fig. 2 

viscous incompressible fluid is often utilized. Within the framework of this model, the 
viscosity of metals during their collision in the explosive welding mode is investigated in 
[2]. 

Let us compare the model equation used in [2], and the Maxwell viscoelastic equations 
in an example of the numerically computed problem. 

Interpolation formulas for the relaxation time T are presented in [7]. These inter- 
polation formulas were constructed by determining the coefficient of viscosity in metals 
during explosive welding [2]. Here the dependence between the coefficient of viscosity 
and the relaxation time T was taken into account [7]: 

~t = pob~z. (3 .  l )  

We have a value of the relaxation time T at each computational point, and hence, accor- 
ding to (3.1), the value of the coefficient of viscosity ~ as well. A numerical computation 
permits determination of the viscous horizontal displacements of the particles of the metal 
layer. They are determined by the equality gv = ~_ sela. 

Under stationarity conditions for the deformation process, the first and subsequent 
equations of the system (|.1) for the viscous components have the form 

Ouv o~v 1 0%~. (3.2) 
P~ = oz + @ '  

v ~.y-\ v ela 

Equation (3.3) can be rewritten in the form 

v F&u~ v O__~vv ~ __ O0. v ela 
TW .t'a 

" k oy o x  ] 

Substituting the equation obtained in (3.2) (under the assumption that ~ = const), we 
obtain 

PoW ~7z Oz -- ~ -~y~-b Q,whereQ = ~ o ~ u  -- gw OxO~ @ " 

We i n t e g r a t e  t h i s  e q u a t i o n  w i t h  r e s p e c t  t o  x b e t w e e n  -~o and  +m: 

v I Qdx, - = + 

+~ 

l S uV(x ,  y ) d x  i s  t h e  h o r i z o n t a l  v i s c o u s  d i s p l a c e m e n t  w h e r e  z ( y )  = W 

v v 0~ --  O; Ox -oo ~-- O. u-oo ~-- O; crn_o~-- O; Oy -~o-- 

We h a v e  f r o m  t h e  r e s u l t s  o f  t h e  n u m e r i c a l  c o m p u t a t i o n  

[ + ;  80 ela ela ela 
'0#" I + - - -  O, ~ + -  _ 0~ 

- - t ~ o  

This means that the magnitude of the integral of Q can be considered approximately 
ze ro. 

Then the horizontal viscous displacement of particles of the metal layer z(y) is 
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determined from the ordinary differential equation 

V V ~Z 
p0wur -- ai l~  ---- 9W--~ (3.5) 

which can be obtained from the model equation 

V V 
Ou "Ooxl 0 2uv ( 3 . 6 )  

p0w Ox Ox : ~ kOy ~ 

by i n t e g r a t i n g  w i t h  r e s p e c t  t o  x b e t w e e n - ~  and +~. I n  t u r n  ( 3 . 6 )  c an  be o b t a i n e d  f r o m  ( 3 . 4 )  
if the quantity Q is neglected therein. 

Equation (3.6) differs from the equation for the steady motion of a viscous incompres- 
sible fluid 

9owOu,/Ox = p~O~u/Oy2 , (3.7) 
used  i n  [7]  by t he  t e r m  ~o~1,/3x. 

It will be shown below that taking account of this term substantially affects the hori- 
zontal viscous displacement of the metal layer particles. 

It follows from (1.4) and (2.3) that ovx~ + Oocou~ = O, then (3.5) is converted to the 
form 

t [1  e~ "~ v d2z 

and (3.7) to the form 

Let us use the notation 

t v d2z 
i~2 ur162 = - -  bo'~ dy  ~ �9 

co) 
A bo~ t - ~ T  u~ for Eq.(3.6) 

/ L-~-2_ U~ for Eq. (3.7). 
(b0~ 

Then ( 3 . 6 )  and ( 3 . 7 )  can  be r e w r i t t e n  i n  t h e  f o r m  

d2z/dy ~ = A .  ( 3 . 8 )  

Following [2], we consider the motion of the metal layer as an ideal fluid jet with con- 
stant pressure. The velocity along the free surface is w here. After the pressure pulse has 
acted on it, the jet rotates through an angle y. Then the law of conservation of momentum is 
not satisfied along the x axis; the momentum is greater prior to jet rotation than after rota- 
tion through the angle y. As in [2], we shall assume the presence of a pulse source which 
will shape a viscous fluid jet moving at a lower speed than the velocity w. From the law of 
conservation of momentum we find the impulse J = powla (I --cos y) along the x axis. 

Then the dissipated velocity u~ as x § co will be determined in the form u~ = J/Po~2 = 
w(1 - cos  u -~ w~2 /2 .  

From the  law o f  c o n s e r v a t i o n  o f  v e r t i c a l  i m p u l s e  i t  f o l l o w s  t h a t  ~F~2l = 0o l2w 2 s i n  y ,  
w h e r e  ~F22 = - p ;  l i s  t h e  l e n g t h  o f  t he  p a r t  o f  t he  l a y e r  on w h i c h  t he  p r e s s u r e  p u l s e  a c t s .  
We h e n c e  o b t a i n  t h e  r e l a t i o n s h i p  s i n  y = - p l / ( p o l 2 W = ) .  

Let us put 

dz Y=12 Z ly=o = O, -~-y ----0. (3.9) 

Let us solve (3.8) under the condition (3.9). We obtain that z(y) = Ay2/2 --Alay is the 
desired horizontal displacement. 

We evaluate the magnitude of the integrals of the viscous displacement (over the height 
of the metal layer) obtained from the Maxwell model equation (3.6): 

S ~ =  3 ~ + % -  ; 
0 
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TABLE 3 

w, kin/see i,s i,s i,2 

p, iO -spa 7,5 5 5 

Scomp , mm --0,54 --0,35 -- i ,04 

S M, mm --0,41 - -035 --0,48 

Sv, mm --0,11 --0,04 --0,i 

~comp' P 1,6.t05. 2,4.i0~ 3,7.i0 ~ 

~M' P i'5't0'~ t05 i '6'iOa 

~t v, P 4 , t . t0  a 2,9.i0 a 3,3.i0 a 

from the equation for the steady motion of a viscous incompressible fluid (3.7): 

& = ~ z ( Y ) @  = - -  T b~--~' 
0 

and also the total displacement obtained from the numerical computation 

Seomp= ~ z~+l/~h~, 
~ _ ~ela where Zm+i/2 = z(ha(m + I/2)) = ~n,m ~n,m- 

The values of the quantities SM, Sv, Scomp are presented in Table 3. The magnitude of 
the relaxation time T, meaning according to (3.1), the magnitude of the coefficient of vis- 
cosity > also, can be calculated from the values of S M and Sv. Values of the three coeffi- 
cients of viscosity >M, ~v and ~comp are presented in Table 3. The relaxation time T is 
rarely a variable function in a numerical computation, hence ~comp evaluated according to 
the mean value of z in the plastic zone is presented in Table 3. 

Analysis of Table 3 shows that the coefficient of viscosity >v computed from the viscous 
incompressible fluid model differs from the coefficient of viscosity >comp obtained by for- 
mulation of a numerical experiment within the framework of the Maxwell viscoelastic model. 
On the other hand, the coefficient of viscosity >M computed from the Maxwell model equation 
(3.6) agrees in orders of magnitude with the computed coefficient of viscosity >comp. The 
model equation (3.6) differs from (3.7) for steady viscous incompressible fluid motion by 
the term ~o~/~x. Compressive residual stresses o~ are formed in the metal as a result of 
its passage through the plastic deformation zone. The presence of residual stresses results 
in a larger horizontal displacement of the metal layer particles than the analogous displace- 
ment given by the viscous incompressible fluid model, which means different orders of magni- 
tude of the values of the viscosity coefficient. 

The author is grateful to S. K. Godunov for formulating and discussing the problem. 
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SOME CONTACT PROBLEMS IN STEADY-STATE NONLINEAR CREEP IN 

CASES WITH THIN COVERINGS 

V. M. Aleksandrov and E. V. Kovalenko UDC 539. 376 

I. We shall first give some fundamental relations in the nonlinear theory of creep for 
the case of plane deformation which are necessary for the rest of our discussion [l]: 

c9(~ x O.~x.. ~ _ aV, xy Oay 
o--7 + -g~-~ - ~  o~ +-g-F = ~  (1.1)  

0%; o2~,~ o%~ + ~ 2 -~-~--~-y, 
ay~ 0x ~ 

e~ = A(r~ -1  I(t - -  v)  cr~ - -  v(~yl, e~ = A ( ~ - '  [ ( i  - -  v) % - -  v (~ ] ,  

where A is the creep modulus and v is the Poisson coefficient. 

Now we consider the solutions of some problems in the equilibrium of a thin layer t 
(gx I < oo, 0~y~h), whose physical and mechanical properties can be described by the system 
of equations (I.1). Suppose that the boundary conditions on the faces of the layer have the 
form 

�9 ~ y = O  ( y = O ,  y = h ) ,  % = - - p * ( x ,  t) ( y = h ) ,  ( 1 . 2 )  

p *  (x ,  t) = p (x ,  t) (~]x[~<a), p * = 0  ([ 'x[>a) ,  v'=B(r~ (y----0). 

Here t is time; v is displacement along the y axis; B is some linear operator whose form will 
be indicated below, or 

x~y = 0 (y = h), oy = - - p * ( x ,  t) (y = h) ,  ( 1 . 3 )  

~" = o (y  = o) ,  v" = B ~  (y  = 0) ,  

u is displacement along the x axis. 

Taking account, furthermore, of the fact that the layer is thin, we see that instead of 
the condition of compatibility of the rates of deformation defined by the third formula in 
(I.1), we can take 

T~y ---- f~'!x) ~- Yf2(x}. (I .4) 

Then the approximate solutions of the boundary-value problems (1.I)-(1.4) can be written in 
the form [2, 3] 

�9 ~ = a~ = O, % = - - p * ( x ,  t), 

s~ = - -  A ( i  - -  ~) [ ( i  - -  ~ -4- v2) /3 ] ("-z ) /~  I~P* (x,  t)I m sgn  p*  (x ,  t); ( 1 . 5  ) 

~:~ = - -  ~, ( t  - -  v ) - ~ p  * (x, t), % = - -  p*:(x, t) ,  -~,~ = - -  ~ ( i  - -  v ) - ~ •  

X (h - -  y )  [p* (x ,  t)]' ,  e~ = - -  A 3  (1-m)/2 [(1 - -  2~)  (1 - -  v ) - l ]  m f P* (x ,  t) [= sgn p*  (x ,  t). ( 1 . 6 )  

"~A l a y e r  w i l l  be cons idered  th in  i f  the l eng th  2a of i t s  a c t i v e l y  loaded segment i s  small  in  
comparison with  the th ickness  h. 
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